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Abstract

Although federal incentives for residential rooftop solar do not discriminate between US

states, there is substantial variation in the marginal emission reductions associated with

solar across states. This variation indicates significant efficiency gains may be possible

by having flexible state-by-state incentives for a given level of spending. In this paper, I

estimate the supply and demand elasticities for new rooftop solar installations, using state-

level incentives as an instrument. I find a demand elasticity of 11% and supply elasticity

consistent with the perfectly elastic case. I then use these parameters to show that the

state-by-state subsidy scheme that minimizes yearly emissions is 61% more efficient than

the uniform incentive. As the Inflation Reduction Act includes unprecedented funding

allocation for climate policy, including incentives for residential rooftop solar generators,

these results may help design better policies.

https://jmbvgarcia.github.io/assets/pdf/SolarProject.pdf


1 Introduction

The Inflation Reduction Act of 2022 (IRA), a groundbreaking piece of legislation address-

ing climate change in the US, includes major incentives for the adoption of residential

photovoltaic solar generators (PV). The IRA accomplishes this mainly through extend-

ing the Investment Tax Credit (ITC), a 30% tax credit for PV installation. While the

ITC does not discriminate across locations, the literature has pointed out that the re-

duction in greenhouse gasses (GHG) associated with adoption varies substantially across

space.Differences in the carbon intensity of the regional energy mix explain much of this

variation. For instance, Sexton et al. (2018) estimate that rearranging the sites of solar

generators would generate an additional $1 billion per year in environmental benefits.

Such differences suggest large efficiency gains may be had by changing subsidy rates

state-by-state based on marginal emission reductions.

The impact of clean energy technologies depends crucially on local characteristics,

especially the resource mix of local energy generation. Based on estimates from the Envi-

ronmental Protection Agency (EPA), the same nominal solar capacity can have as much

as twice the impact if installed in Nebraska versus New York. This marginal impact on

emissions is uncorrelated with residential PV installations or existing installation incen-

tives, suggesting no existing mechanisms to target installations along this margin. While

I show this lack of correlation at the state level, Sexton et al. (2018) document the same

the zip-code level.

In this paper, I estimate the gains from the optimal state-by-state subsidy schedule

relative to a uniform subsidy for a given level of spending. To do so, I first produce new

estimates of the supply and demand elasticities of PV adoption. I combine detailed data

on installations and prices from two sources to identify elasticities based on variation in

state-level incentives. Using zip-code level data on installations, I can focus on bordering

counties to compare similar locations across states with different policies, minimizing

unobserved heterogeneity. I then take my estimates to a simple supply and demand
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model and find that implementing the optimal incentive schedule decreases emissions by

an additional 61%.

To assess the potential efficiency gains of fiscal incentives directing adoption to higher-

impact states, we need to estimate a model of the PV adoption market. Besides the

marginal impact per state, the crucial parameters are the elasticities and levels of demand

and supply. The higher the price sensitivity of demand, the easier it is for incentives to

redirect adoption leading to larger gains. Because subsidies are paid to submarginal

adopters, it is more expensive to subsidize states with larger demand at a given price.

In the first part of this paper, I estimate the short-run elasticities of supply and

demand in the residential PV market. I estimate key empirical parameters with minimal

structural assumptions, using variation across US states for identification, following the

approach detailed in Zoutman et al. (2018) and Dearing (2022). Identification is based

on differences in incentive policies between bordering states, restricting the sample to

counties along the border to minimize unobserved heterogeneity. This approach extends

previous work on estimating reduced-form parameters in the PV market (Hughes and

Podolefsky, 2015; Pless and van Benthem, 2019; Dong et al., 2018). While these papers

often focus on the largest markets, especially California, I can incorporate data from

several states and estimate supply and demand parameters. This reduced-form approach

complements previous work focused on structural dynamic models of adoption (Williams

et al., 2020; van Blommestein et al., 2018; Islam, 2014). While my results do not speak

to the “deep parameters” of the PV adoption problem, they provide empirical facts that

may help calibrate structural models.

I find evidence for a highly elastic supply curve while the elasticity of demand is well

below one. My regression analysis shows that higher incentives are associated with (1)

significantly higher PV installations, (2) significantly lower price net of incentives, and (3)

no difference in gross prices. Together, (1) and (3) imply a large elasticity of supply and

full pass-through of incentives, consistent with a highly competitive environment. Dong
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et al. (2018) and Pless and van Benthem (2019) find similar results in analyses of PV

incentives in California. My estimated elasticity of demand is 12%. While an extensive

literature studies the relationship between incentives and adoption or prices, this is, to

the best of my knowledge, the first paper to produce estimates of supply and demand

elasticity for a large share of the American PV market.

In the second part of the paper, I take these elasticity estimates to a simple supply

and demand model over states and find that targeting incentives improves outcomes by

61%. Assuming states have identical constant elasticities but different supply and demand

levels, the model simulates the spending of $1 billion in addition to existing incentives. I

compare the scenario implementing a fixed incentive capacity unit against state-specific

incentives. Supply and demand parameters, as well as existing incentives, are calibrated

from 2021 data. Optimal state-specific incentives are highly concentrated in a few states,

with Arizona responsible for a large share of the efficiency generated.

This paper contributes to the growing literature on encouraging environmental tech-

nologies with geographically varying benefits. Tibebu et al. (2021) derive optimal sub-

sidies in the context of an explicit dynamic adoption model with technological progress.

Holland et al. (2016) study this problem in the context of electric vehicle purchases.

2 Background

Residential PV generators are one technology that stands to grow even faster due to the

incentives in the IRA, helping the US transition to clean energy. The Inflation Reduction

Act is the most significant piece of legislation ever passed dealing with climate change,

amounting to $390 billion of spending in this area. Among many other stipulations, it

includes $128 billion for renewable energy, including $9 billion for home energy improve-

ment programs. It also extends for ten years the consumer tax credits under the ITC for

direct ownership of residential PV generators.
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Figure 1: Reduction in yearly CO2 emissions caused by 1MW of PV
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However, there is substantial heterogeneity in the effect of solar installed in different

states on emissions. Figure 1 shows the impact of adding 1MW of distributed nominal

capacity in each state, estimated with the EPA’s AVERT model (EPA, 2023), in tons of

CO2 per year. The effects range from as low as 800 tons parts of New England to as

high as 1600 tons in the central plains region. These differences are not mainly due to

the physical potential for solar generation but to the emission intensity of the marginal

alternative energy source.

This pattern suggests potentially significant gains from directing PV installations to-

ward high-impact areas, but actual residential installations have, if anything, gone in

the opposite direction. Figure 2 shows the relationship between the marginal emission

reduction in the horizontal axis and the log of cumulative installed capacity in 2021 in

the vertical axis. In the largest solar market, California, 1 MW of solar capacity reduces

emissions by less than 1000 tons, putting it in the bottom fifth in marginal impact. On

the other hand, the adoption of residential solar has been very modest in the Midwest

and Central Plains areas.
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Figure 2: Effect of PV on Emissions vs Installed Capacity

Notes : This figure shows, on the horizontal axis, the marginal reduction in CO2 emissions
caused by an additional 1 MW of installed solar capacity. On the vertical axis, the log
total installed capacity as of 2021. Each point represents one US state among the lower
48. Alabama is excluded because, according to SEIA data, it has zero installations.
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To assess the potential efficiency gains of fiscal incentives directing adoption to higher-

impact states, we need to estimate a model of the PV adoption market. Besides the

marginal impact per state, the crucial parameters are the elasticities and levels of demand

and supply. The higher the price sensitivity of demand, the easier it is for incentives to

redirect adoption, leading to larger gains. Because subsidies also benefit submarginal

adopters, it is more expensive to subsidize states with higher demand at a given price.

3 Data

I rely on three primary data sources to identify supply and demand parameters and

compute counterfactual emissions, complemented by several others. Data on emissions

is from the EPA’s AVERT model. Berkeley Lab’s Tracking the Sun report is the main

source for PV installations and prices, complemented by EnergySage’s price data. The

NC Clean Energy Technology Center’s DSIRE database compiles information on federal

and state-level incentives.

3.1 Emissions

To estimate the marginal reduction in emissions caused by PV installations, I use the

EPA’s AVERT model (EPA, 2023). EPA created the model explicitly to evaluate the

emission impacts of energy policies such as PV installations. It takes EPA’s data on

energy load and emissions in every fossil fuel plant over a year as inputs and estimates

solar energy output at a given site. From this, the model outputs the predicted reduction

in CO2 emissions resulting.

The first step in the estimation is modeling the relationship between fossil fuel energy

load and emissions. The total hourly grid load on fossil fuels over the year is sorted in

ordered bins. Then, for each fossil fuel power plant, AVERT computes a) the probability
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it is operational and b) a probability distribution of its power output as a function of grid

load. It also estimates the distribution of emissions in each plant given its power output.

The next step is to predict the hourly generation from a given solar installation and

subtract it from the grid load using the National Renewable Energy Laboratory’s PVWatts

model (Dobos, 2014). This tool takes as input the nominal capacity of a rooftop solar

generator and specific geographical coordinates for its location and estimates expected

hourly generation across a year. It considers factors such as solar irradiance, weather

variability, and efficiency losses. The generators are assumed to be placed in several

cities, representing the largest load centers for each state.

Finally, using each plant’s generation and emissions distributions, AVERT simulates

the expected emissions given the lower grid load. Figure 1 shows the estimated effects of

installing 1 MW nominal capacity at each state. Differences between states are largely

driven by the intensity of the use of coal versus gas within the fossil fuel category. The

share of fossil fuels out of total power generation is comparatively unimportant.

Two limitations of this method are particularly relevant for this study. First, the

analysis takes the generation profile of a given year as given. Changes to fossil fuel prices,

plant openings or closings, or transmission changes could meaningfully affect results in

ways the model does not consider. Any possible endogenous price responses, as well as

the evolution of these characteristics over time, will impact these results in ways that are

difficult to predict.

Second, AVERT models each state separately and assumes power imports and ex-

ports to other regions remain constant. These energy flows are substantial in practice;

for instance, California imports around 25% of its electricity, making it the largest gross

importer. Meanwhile, the Midwest and Central areas are net energy exporters and rela-

tively more carbon-intensive than average. These patterns may be of particular concern,

given we are studying the allocation of PV between states. If adjustments to the flows
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between balancing authority areas are a relevant margin of adjustment to additional solar

energy, our estimates could be biased.

3.2 PV Installations

I use Berkeley Lab as the primary source for residential PV installations (Barbose et al.,

2022). This dataset, compiled in collaboration with state governments and utilities, pro-

vides data on individual installations. It includes zip-code-level location, installation date,

price, capacity installed, installer identity, and several system characteristics. The dataset

covers 30 US states, with all large solar markets represented.

Berkeley Lab data is crucial because it includes geographic information at a level finer

than the state. This information allows us to compare prices and quantities in bordering

counties, minimizing unobserved heterogeneity. We complement this information with

demographic data from the American Community Survey, including the number of housing

units, mean house value, and median household income by zip code.

This dataset has two important limitations. The first is that coverage is not perfect,

and different states may have different misreporting rates. We deal with this problem by

comparing total installations to state-level data from the Solar Energy Industry Associa-

tion (SEIA) and checking the sensitivity of results to different adjustments.

The second is that price data are unavailable for every included state. Since price in-

formation is crucial, I supplement Berkeley Lab’s data with proprietary data from Energy

Sage. Energy Sage is a web-based platform that catalogs residential PV installers and

recommends them to consumers based on their location, preferences, and other charac-

teristics. I observe a random sample of searches and use prices of winning offers where

price data is missing from Berkeley Lab.

For the simulation of results covering all the US states, I use data from 2021 by

Wood—Mackenzie and SEIA (Mackenzie and SEIA, 2021). This dataset comprises in-

formation on residential PV installations at the state level across the entire country. It
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is based on proprietary industry information. Since it does not have the same coverage

issues as the Berkeley Lab data, I consider it the “ground truth” in this paper.

3.3 Incentives

For my main instrument, I use the Database of State Incentives for Renewables and

Efficiency (DSIRE) as a source for federal- and state-level incentives for PV adoption

Cummings (2009). I observe tax credits, rebate programs, and other types of incentives

from 2018 to 2021. Local and utility-level incentives are not included in the analysis. For

incentives that only went into effect after September of a given year, I only include them

in the analysis as affecting the next year.

Because some types of incentives are difficult to quantify, I focus on a) tax credits,

b) direct rebates, and c) tax exemptions (mainly sales tax). These categories include the

most important programs, particularly the federal ITC. I also include an estimate of the

value of programs that give a rebate or tax credit depending on the assessed or actual

production over a specific time horizon. Among the excluded incentives are property tax

exemptions and carbon credit appropriations.

4 Model

I present a stylized model of the market for PV installations. The first part of this

paper is concerned with estimating the price elasticities in the model from US data. The

second part uses the estimates and the model to study the effects of counterfactual policy

experiments changing the subsidy rate.

Let’s consider a standard supply and demand system at each state, with constant

elasticities. Denoting quantities demanded and supplied at location j, year t, respectively

Qd
jt and Qs

jt; prices pjt, subsidies τjt, and the number of housing units Njt that do not

already have a PV system.
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Qs
jt = Njt exp(γXjt)(pjt)

δujt (Supply)

Qd
jt = Njt exp(αXjt)(pjt − τjt)

βϵjt (Demand)

With ujt and ϵjt as error terms. Taking logs and with qjt := Qjt/Njt:

ln qsjt = δ ln pjt + γXjt + ujt (Supply (log))

ln qdjt = β ln(pjt − τjt) + αXjt + ϵjt (Demand (log))

The equilibrium condition:

Qd
jt = Qs

jt (E.C.)

I denote Q∗(τ) the quantity that solves the system as an implicit function of subsidies.

In the next sessions, I first deal with the question of identifying and estimating elas-

ticities β and γ. Then, I use the model and the elasticity estimates to study the effects

of variable subsidies τ .

5 Estimating elasticities

I estimate supply and demand parameters relying on changes in state incentives for PV

adoption, following the approach outlined in Zoutman et al. (2018) and Dearing (2022). In

order to compare areas as closely comparable as possible, I focus on bordering counties be-

tween states with different incentive rates. By estimating the effect of incentives on prices

to producers and to consumers, I am able to identify both supply and demand elasticities.
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Results suggest supply is very highly elastic, while demand elasticity is only around 12%.

Results are imprecisely estimated, but are corroborated by alternative methods.

5.1 Estimation

Zoutman et al. (2018) provides the theoretical framework for identifying both supply and

demand elasticities using as instrument only the variation in a single tax rate. In our

case, we can identify β and δ using the variation in state-level incentives as instruments.

The key intuition for this result is that the supply and demand model provides theoretical

restrictions that we can leverage to identify the relevant parameters.

The first assumption we need corresponds to the usual exclusion restriction. The

require changes in subsidy rates to be uncorrelated with unobserved determinants of

adoption. This assumption would fail, for example, if states where the population is

becoming more worried about the environment are more likely to increase subsidies and

also see increased demand for PV adoption.

The second assumption is what Zoutman et al. (2018) terms the Ramsey Exclusion

Restriction, which stipulates that changes in subsidy rates can only affect demand and

supply through their effects on prices. This assumption would fail if, for instance, higher

subsidies increase the salience of solar energy and have an outsized effect in demand

beyond the one through price. Alternatively, because incentive programs are often im-

plemented as tax rebates, they may be themselves be less salient, as Chetty et al. (2009)

find with sales taxes.

Under these assumptions, we can easily recover the supply and demand elasticities by

instrumenting, respectively, the net price (pjt−τjt) or the full price pjt by the subsidy rate.

The identifying assumption is that τjt is uncorrelated to unobserved variation, condition

on covariates: E[τjtujt|Xjt] = 0, E[τjtϵjt|Xjt] = 0.

To minimize the role of unobserved heterogeneity, I restrict the sample to bordering

counties between two states. While market conditions may differ between contiguous
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states, including physical conditions, i.e., solar irradiance, we can minimize these differ-

ences by focusing on the counties to either side of the border. This restriction focuses on

areas with the identifying variation, assuming that the relevant unobserved heterogeneity

changes continuously over space.

Therefore, my unit of observation is a county-by-border-by-year. I use only counties

adjacent to a state border between two states if I have data for both during at least one

year between 2018 and 2021. My measure of log quantity is the total capacity installed,

divided by the number of housing units in the zip code, to make locations with different

populations comparable. Similarly, prices are measured in dollars per kW capacity.

Two related issues exist when using fiscal incentives as instruments. First, most federal

and state incentives have complicated, non-linear rules depending on prices and system

sizes and usually include maximum values per household. Properly including these kinds

of incentives in a regression framework is not straightforward. Second, demand for PV sys-

tems of different characteristics adjusts in response to the incentive design. For instance,

smaller systems are relatively cheaper for consumers in states that include a lump-sum

rebate for PV systems above a specific capacity.

I deal with these two issues using “simulated instruments” that apply the incentive

rules of each state to a shared pool of installations. I start by taking each pair of states,

say A and B, and pooling together all installations in a given year. Then, I compute

the net price given system characteristics under the incentive scheme in state A for every

installation in both A and B. The simulated incentive for state A is the average ratio

between total price and net price (and correspondingly for B). Because the instruments

for A and B are calculated using the same sample of installations, the differences are

driven entirely by the incentive rules themselves, not any differences in composition. This

type of approach has often been used to study the effects of different policy regimes in,

e.g., taxation (Gruber and Saez, 2002), health (Cohodes et al., 2016), and labor (Cullen

and Gruber, 2000).
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To make the construction more explicit, let’s call IA,t,B the collection of indices in

the sample corresponding to installations in state A, year t. Each installation i has

information on total price paid Pi and total capacity installed Ci. Let fA,t(Pi, Ci) be

a function describing the total incentives due to an installation with total price Pi and

capacity Ci according to the state laws in A during year t. Denote B the bordering state,

remember the sample is restricted to counties along the border, and ns,t the total number

of installations in the sample in state s, year t. Then, the instrument for incentives in A,

bordering B, at year t is:

zA,t,B =
1

nA,t + nB,t

∑
i∈IA,t∪IB,t

fA,t(Pi, Ci)

Therefore, our main estimating equations are the following.

ln qj,t = η1zs(j),t,s′(j) + η2Xj,t + erj,t (Reduced form)

ln pj,t = θ1zs(j),t,s′(j) + θ2Xj,t + eSj,t (First stage: Supply)

ln(pj,t − τj,t) = ϕ1zs(j),t,s′(j) + ϕ2Xj,t + eDj,t (First stage: Demand)

ln qj,t = δpj,t + γXj,t + uj,t (IV: Supply)

ln qj,t = β(pjt − τjt) + αXj,t + ϵj,t (IV: Demand)

With Xj,t a vector of controls that includes an intercept, median household income,

average home values, and energy prices.
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5.2 Results

Table 1 below summarizes the results. Column 1 shows that an extra thousand dollars

in incentives is associated with an increase of 3.7% in capacity installed per capita. The

same incentive increases prices by only 0.1%, with a wide confidence interval (Column 2).

Net price, however, decreases strongly by 26% (Column 3). Although this effect has even

larger errors, we reject the hypothesis that it equals zero.

Column 4 shows the IV estimates of the structural supply elasticity, that is, the effect

of log price on log capacity installed per capita. Since the incentive instrument does not

have an appreciable effect on price, that implies a highly elastic supply. A consequence

of price insensitivity to the instrument is that the elasticity estimate is extremely noisy.

The practical implication is that supply is close to the perfectly elastic case. Column 5

shows the estimates of the demand curve’s elasticity. I find an elasticity of 12%, with the

correct sign. Precision is low, with a 90% confidence interval covering from 23% to close

to 0.

Table 1: Regression Results

(1) (2) (3) (4) (5)
ln Capacity pc ln Price ln Net Price ln Capacity pc ln Capacity pc

Incentive 0.0373 0.00141 -0.259
(0.0126) (0.0640) (0.108)

ln Price 21.83
(986.4)

ln Net Price -0.119
(0.0690)

N 6622 5871 5871 5871 5871
Clusters 83 81 81 81 81
Year FE Yes Yes Yes Yes Yes
Border FE Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes
Estimator OLS OLS OLS IV IV
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6 Optimal Incentives

To quantify the potential gains from target incentives, I apply the estimated elasticities

to a simple supply and demand model calibrated to the 2022 PV market. I study the

problem of maximizing the policy’s emissions impact, given a budget constraint. My

results indicate that, for a target spending of 1 billion dollars, the impact of state-specific

incentives is about 60% larger than that of the uniform incentive.

6.1 Model

I study the problem of minimizing emissions, given an incentive budget constraint. The

planner has a budget B and uses it to implement adoption incentives. In the first case

we study, this budget only finances extra incentives on top of existing ones, which I

take as given. This framework represents the problem of enacting a new subsidy given

existing policies. Write the total incentive in state j, τj as the sum of the already existing

incentives τ̄j, that are taken as given, and new incentives τ ∗j .

τj = τ̄j + τ ∗j

Denote ej the marginal emissions associated with one PV installation in state j. Then

the problem is:

min
τ∗j

∑
J

ejQ
∗
j(τj)

s.t.
∑
J

τ ∗j Q
∗
j(τj) ≤ B,

∀τ ∗j : τ ∗j ≥ 0
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Our key interest lies in comparing the objective function the planner can reach with

flexible incentives compared to uniform incentives. The uniform incentives case is repre-

sented simply as the additional restriction τ ∗j = τ ∗.

I take the model to US data from 2022, using installation data from SEIA and Wood

and Mackenzie and price data from Energy Sage. I dropped two states from the analysis,

Alabama and Tennessee because they have zero residential PV installations in the year.

Thus, our model implies that no amount of incentives will induce demand. For another

seven states, we do not have price data (KS, MS, MT, NB, ND, SD, WY). In these cases,

we impute the average price across all other states. Because these are all small markets

for PV, the sensitivity of results to this imputation is small.

6.2 Results

My main result is that, in the marginal expenditure exercise, targeting by state induces a

61.5% larger reduction in CO2 emissions compared with a uniform incentive spending the

same amount. The distribution of this incentive is very concentrated, with large discounts

for installations in Oklahoma and three Southwestern states, with close to zero allocated

to northern states. Each taken alone, marginal emissions, population size, or the scale of

existing demand cannot fully explain the resulting distributions.

In the baseline exercise, I model the expenditure of $1 billion in a flat incentive per

installed unit of capacity. At this level of extra spending, the flat subsidy offered is $0.244

per W, or about 8.8% of the average price before incentives. This level of incentives implies

a reduction of 50.38 million tons of CO2 emitted per year, on top of the business-as-usual

estimated effect of 4.6 billion tons of CO2.

Figure 3 shows the estimated optimal additional incentives. Four states stand out very

clearly: Oklahoma (1.29), Arizona (1.08), Nevada (0.96), and Utah (0.86) have the largest

incentives. Florida, New Jersey and South Carolina also have slight increases relative to

the uniform incentive. Seven other states have lower levels that are still $0.11 per W,
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Figure 3: Optimal Additional Incentives: τ ∗s

while the others have rates close to zero. Figure 4 shows the optimal additional incentives

added to existing federal and state incentives. While existing incentives are negatively

correlated with marginal impact, the total incentives after adding this spending are not.

The emissions impact of the optimal subsidy schedule is 81.35 million tons of CO2

per year, a 61% increase relative to the uniform subsidy case. Arizona is responsible for

a large part of the efficiency gains, as the model predicts the increased subsidies will lead

to an extra 31 million tons of CO2.

Figure 5 shows how the estimated optimal incentive depends on four key variables:

marginal emissions, existing incentives, the number of housing units in the state, and

the scale parameter of demand Bj. The four states with high optimal incentives have

relatively high marginal emissions and demand and relatively low current incentives and

number of units.
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Figure 4: Optimal Total Incentives: τs

Figure 5: Optimal Incentive vs State Characteristics
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7 Conclusion

This paper highlights the potential for optimizing the state-by-state subsidy schedule

for residential PV under the Inflation Reduction Act of 2022 (IRA). By leveraging new

estimates of supply and demand elasticities of PV adoption, I demonstrate that imple-

menting an optimal incentive schedule can lead to a 61% larger reduction in emissions

than a uniform subsidy approach. This finding underscores the importance of tailoring

incentives to the specific characteristics of each state’s energy landscape, as indicated by

the substantial variation in greenhouse gas reduction benefits across different locations.

This paper also reinforces the potential value of improving data reporting standards

to help address practical challenges in environmental policy. The need for standardized,

representative data on the PV market severely limits what we can learn about how to

improve government policy in this area. Considering the amount of public investment,

creating and distributing better data may be a public good with significant social returns.
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